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TOPOLOGICAL CONDITIONS OF NI NEAR-RINGS

P. Dheena and C. Jenila

Abstract. In this paper we introduce the notion of NI near-rings similar
to the notion introduced in rings. We give topological properties of col-
lection of strongly prime ideals in NI near-rings. We have shown that if
N is a NI and weakly pm near-ring, then Max(N) is a compact Hausdorff
space. We have also shown that if N is a NI near-ring, then for every
a ∈ N, cl(D(a)) = V (N∗(N)a) = Supp(a) = SSpec(N)\int V (a).

1. Introduction

Throughout this paper, N stands for a zero-symmetric near-ring with iden-
tity and all prime ideals of N are assumed to be proper. We use P (N), N∗(N)
and N(N) to represent the prime radical, the nilradical (i.e., the sum of all nil
ideals) and the set of all nilpotent elements of N , respectively. An ideal P of
N is prime if for any two ideals A and B of N, AB ⊆ P implies A ⊆ P or
B ⊆ P. An ideal P of N is said to be completely prime if ab ∈ P implies a ∈ P
or b ∈ P for any a, b ∈ N. An ideal S of N is said to be completely semiprime
if a2 ∈ S implies a ∈ S for any a ∈ N.

An ideal P of N is said to be strongly prime if P is prime and N/P has no
non-zero nil ideals. A near-ring N is said to be strongly prime if the ideal {0}
is strongly prime. An ideal P of a near-ring is minimal strongly prime ideal if
P is minimal among strongly prime ideals of N. Observe that every completely
prime ideal of N is strongly prime and every strongly prime ideal is prime but
the converses do not hold.

Note that N∗(N) of a near-ring N is the unique maximal nil ideal of N. For
a near-ring N, N∗(N) = ∩{P | P is a strongly prime ideal of N} = ∩{P | P is
a minimal strongly prime ideal of N} by ([2], Lemma 1.5).

A near-ring is called reduced if it has no nonzero nilpotent elements. Now we
introduce the notion of NI near-rings. A near-ring N is called NI if N∗(N) =
N(N). Note that N is NI if and only if N(N) forms an ideal if and only if
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N/N∗(N) is reduced. Topological properties of strongly prime ideals of NI
rings have been characterized in [3]. Dheena and Sivakumar [2] have obtained
only the properties of NI near-rings. Now we obtain topological properties of
strongly prime ideals of NI near-rings. In this paper we study the structure
of NI near-rings relating to strongly prime ideals and we associate the near-
ring properties and topological properties. We extend the results obtained by
Hwang et al. [3] for NI rings to NI near-rings. A near-ring N is called 2-primal
if P (N) = N(N). Clearly 2-primal near-rings are NI but the converse need not
hold.

We use SSpec(N) and Max(N) for the space of all strongly prime ideals
and the subspace of all maximal ideals of N, respectively. For any a ∈ N, we
define V (a) = {P ∈ SSpec(N) | a ∈ P} and D(a) = SSpec(N)\V (a). Let
V (J) = ∩a∈JV (a), where J is an ideal of N. Then F = {V (J) | J is ideal of
N} is closed under finite union and arbitrary intersections, so that there is a
topology on SSpec(N) for which F is the family of closed sets. This is called
the Zariski topology (see [9]). For any subset A of N, 〈A〉 denotes the ideal of
N generated by A. For any a ∈ N, 〈a〉 stands for the ideal of N generated by
a. Note that V (A) = V (〈A〉) for any subset A of N. Let B = {D(a) | a ∈ N}.
Then B is a basis for a topology of SSpec(N).

The operations cl and int denote the closure and the interior in SSpec(N).
For any subset S of N, we define N∗(N)S = {n ∈ N | nS ⊆ N∗(N)} . We set
Supp(a) = ∩x∈N∗(N)aV (x). In this paper the notations of near-ring are from
[8] and the notations of topology are from [7].

2. Preliminaries

Following Lambek [4], we have the following definition for symmetric near-
ring.

Definition 2.1. A near-ring N is called symmetric if abc = 0 implies acb = 0
for all a, b, c ∈ N.

Note that N is symmetric if and only if a1a2 · · ·an = 0, with n any posi-
tive integer, implies aσ(1)aσ(2) · · · aσ(n) = 0 for any permutation σ of the set
{1, 2, . . . , n} and ai ∈ N.

We first need the following lemmas.

Lemma 2.2. For a near-ring N the following conditions are equivalent:
(1) N is NI.

(2) Every minimal strongly prime ideal of N is completely prime.

(3) N/N∗(N) is a subdirect product of domains.

(4) N/N∗(N) is a reduced near-ring.

(5) N/N∗(N) is a symmetric near-ring.

Proof. (1) ⇔ (2) is proved by Dheena and Sivakumar ([2], Theorem 2.6). The
other implications are straightforward. �
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Lemma 2.3 ([2], Theorem 1.4). If M is a multiplicative subset in N\0, then
there exists a strongly prime ideal P of N such that P ∩M = φ.

3. Topological space of SSpec(N)

In this section, we associate the near-ring properties of N and the topolog-
ical properties of SSpec(N). A near-ring N is called (weakly) pm if for each
(strongly) prime ideal P of N, there exists unique maximal ideal M of N such
that P ⊆ M. Clearly pm near-rings are weakly pm near-rings. Let A be a subset
of N. We denote the lattice of all ideals of N by Idl(N) and S(A) =

⋂
A⊆P P

with P ∈ SSpec(N). N denotes the set of positive integers.

Lemma 3.1. Let N be a near-ring and A be a subset of N.

(1) SSpec(N) is a topological space with a base {D(a) | a ∈ N}.
(2) D(A) =

⋃
a∈A D(a) = D(S(A)).

(3)
⋃

i∈I D(Ai) = D(
∑

i∈I Ai) where Ai is a subset of N containing 0 for

all i ∈ I.
(4) D(I) ∩D(J) = D(IJ) for ideals I, J in N.
(5) D(I) ∩ D(J) = φ in SSpec(N) if and only if IJ ⊆ N∗(N) for ideals

I, J in N.
(6) S(IJ) = S(I) ∩ S(J) ⊇ S(I)S(J) for I, J ∈ Idl(N).

Proof. Straightforward. �

For any subset A of SSpec(N), we denote ∩A = ∩P∈AP.

Lemma 3.2. Let N be a near-ring. If A is a subset of SSpec(N), then there

exists an ideal J = ∩A of N with cl(A) = V (J). In particular, if A is a closed

subset of SSpec(N), then A = V (J) for some ideal J of N.

Proof. Let P ∈ V (J) and let D(x) be any arbitrary element in the basis B such
that P ∈ D(x). Suppose that D(x) ∩ A = φ. Then x ∈ J, and so P ∈ V (x), a
contradiction. Thus D(x)∩A 6= φ, and hence, the result follows from Theorem
17.5 of [7]. �

In view of above lemma, we have the following remark.

Remark 3.3. Let N be a near-ring.
(i) The closure of P ∈ SSpec(N) is V (P ).
(ii) A point P ∈ SSpec(N) is closed if and only if P ∈ Max(N).
(iii) If P,Q ∈ SSpec(N) with cl(P ) = cl(Q), then P = Q.

With the help of Lemma 3.2, we have the following important characteriza-
tions of SSpec(N).

Theorem 3.4. Let N be a near-ring.

(1) If F is a closed set and D(K) is an open set in SSpec(N) satisfying

F ∩Max(N) ⊆ D(K), then F ⊆ D(K).
(2) SSpec(N) is a compact space.
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(3) Max(N) is a compact T1-space.

(4) If SSpec(N) is normal, then Max(N) is a Hausdorff space.

(5) If N∗(N)=∩Max(N) and Max(N) is a Hausdorff space, then SSpec(N)
is normal.

Proof. (1) Suppose that there is P ∈ F with P /∈ D(K). Let F = V (L) for
some ideal L of N. Then K + L ⊆ P. Hence each maximal ideal M containing
P is also contained in F. Thus M ∈ F ∩ Max(N), and so M ∈ D(K), a
contradiction.

(2) Let {D(sj) | j ∈ J} be an open cover of SSpec(N). Hence SSpec(N) =
∪j∈JD(sj). Then φ = ∩j∈J (SSpec(N)\D(sj)) = ∩j∈JV (sj) = V (

∑
j∈J 〈sj〉)

which gives
∑

j∈J 〈sj〉 = N. Then there exists K ⊂ J finite with 1 =
∑

k∈K s
′

k,

where s
′

k ∈ 〈sk〉 which implies SSpec(N) = ∪k∈KD(s
′

k). Indeed, clearly

∪k∈KD(s
′

k) ⊆ SSpec(N)

and suppose P ∈ SSpec(N) with P /∈ ∪k∈KD(s
′

k). Then s
′

k ∈ P for all k ∈ K
which implies 1 ∈ P, a contradiction. Hence SSpec(N) is a compact space.

(3) For any si ∈ N, {D(si)∩Max(N)} is an arbitrary open set of Max(N).
Let {D(si)∩Max(N) | i ∈ J} be an open cover of Max(N). Hence Max(N) =
(∪i∈JD(si)) ∩ Max(N). Then φ = ∩i∈J (Max(N)\D(si)) = (∩i∈JV (si)) ∩
Max(N) = V (

∑
i∈J 〈si〉)∩Max(N) which implies

∑
i∈J 〈si〉 = N. Then there

exists J1 ⊂ J finite with 1 =
∑

j∈J1
s
′

j , where s
′

j ∈ 〈sj〉 , and so Max(N) =

(∪j∈J1
D(s

′

j)) ∩Max(N). Therefore Max(N) is a compact space. Let M1 and

M2 be two distinct elements in Max(N). Then M1 ∈ D(M2) ∩Max(N) and
M2 ∈ D(M1) ∩Max(N), and so Max(N) is a T1-space.

(4) Let M1 and M2 be distinct elements in Max(N). Then {M1} and {M2}
are closed subsets in both SSpec(N) and Max(N). If SSpec(N) is normal,
then there exist disjoint open sets D(I) and D(J) in SSpec(N) such that
{M1} ⊆ D(I) and {M2} ⊆ D(J) for some ideals I and J of N, respectively. So
M1 ∈ D(I) ∩Max(N) and M2 ∈ D(J) ∩Max(N), which imply Max(N) is a
Hausdorff space.

(5) Let F1 and F2 be two disjoint closed subsets of SSpec(N). Then F1 ∩
Max(N) and F2 ∩ Max(N) are also disjoint closed subsets of Max(N). By
Theorem 32.3 in [7], Max(N) is normal. So there are open subsets D(I) and
D(J) of SSpec(N) such that F1 ∩ Max(N) ⊆ A, F2 ∩ Max(N) ⊆ B and
A ∩ B = φ, where A = D(I) ∩ Max(N) and B = D(J) ∩ Max(N). Assume
N∗(N) = ∩Max(N). Then IJ ⊆ ∩Max(N) = N∗(N) since D(I) ∩ D(J) =
D(IJ), and soD(I)∩D(J) = φ. By (1), we have F1 ⊆ D(I) and F2 ⊆ D(J). �

Following Sun [10], we define the normality of Idl(N).

Definition 3.5. Idl(N) is called normal if for each pair I1, I2 ∈ Idl(N) with
I1 + I2 = N there are J1, J2 ∈ Idl(N) such that I1 + J1 = N = I2 + J2 and
J1J2 = 0.
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Definition 3.6. Max(N) is said to be a retract of SSpec(N) if there is a
continuous map f : SSpec(N) → Max(N) such that f(M) = M for each
M ∈ Max(N).

Lemma 3.7. Let N be a near-ring.

(1) SSpec(N) is normal if and only if for each pair I1, I2 ∈ Idl(N) with

I1 + I2 = N there are J1, J2 ∈ Idl(N) such that I1 + J1 = N = I2 + J2
and S(J1)S(J2) ⊆ N∗(N).

(2) If Idl(N) is normal, then so is SSpec(N) .
(3) If Max(N) is a retract of SSpec(N), then N is a weakly pm near-ring.

(4) If Idl(N) is normal, then N is a weakly pm near-ring.

Proof. (1) Suppose that I1, I2 ∈ Idl(N) with I1 + I2 = N and let F1 =
SSpec(N)\D(I1), F2 = SSpec(N)\D(I2). ClearlyD(I1)∪D(I2) = D(I1+I2) =
D(N) = SSpec(N), so F1 and F2 are disjoint closed subsets of SSpec(N). If
SSpec(N) is normal, then there are disjoint open subsets D(J1) and D(J2)
of SSpec(N) such that F1 ⊆ D(J1) and F2 ⊆ D(J2). Since D(I1 + J1) =
D(I1) ∪D(J1) = SSpec(N) and D(I2 + J2) = D(I2) ∪D(J2) = SSpec(N), we
have I1 +J1 = N = I2+J2. Since D(J1) and D(J2) are disjoint, S(J1)S(J2) ⊆
N∗(N). Conversely, let F1 and F2 be disjoint closed subsets of SSpec(N). Say
F1 = SSpec(N)\D(I1) and F2 = SSpec(N)\D(I2). Since F1 and F2 are dis-
joint, D(I1) ∪ D(I2) = SSpec(N) = D(N). By Lemma 3.1(3), I1 + I2 = N.
Then there are J1, J2 ∈ Idl(N) such that I1 + J1 = N = I2 + J2 and
S(J1)S(J2) ⊆ N∗(N). Hence F1 ⊆ D(J1) and F2 ⊆ D(J2). Clearly D(J1) ∩
D(J2) = D(S(J1)S(J2)). By Lemma 3.1(5), D(J1) and D(J2) are disjoint.

(2) Straightforward.
(3) Suppose that P ∈ SSpec(N) and M1 is any maximal ideal of N contain-

ing P. Let f : SSpec(N) → Max(N) be a continuous retration and f(P ) = M.
Since {M} is closed in Max(N), we have f−1({M}) is closed in SSpec(N).
Since f−1({M}) contains the closure of P, f−1({M}) also contains M1. Hence
M1 = f(M1) = M.

(4) Suppose that there is P ∈ SSpec(N) with P ⊆ M1 ∩ M2 for some
distinct M1, M2 ∈ Max(N). Since Idl(N) is normal and M1 +M2 = N, there
are J1, J2 ∈ Idl(N) such that M1 + J1 = N = M2 + J2 and J1J2 = 0. Since
J1J2 = 0, we have J1 ⊆ P or J2 ⊆ P. If J1 ⊆ P then J1 ⊆ M1, a contradiction.
The case of J2 ⊆ P induces a similar contradiction. �

Note that if N is a NI near-ring, then N∗(N) is completely semiprime ideal
and ab ∈ N∗(N) implies 〈a〉 〈b〉 ⊆ N∗(N) for any a, b ∈ N.

Combining Lemma 2.3 and Lemma 3.4, we have the following theorem.

Theorem 3.8. Let N be a NI and weakly pm near-ring. Then Max(N) is a

compact Hausdorff space.
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Proof. By Lemma 3.4(3), Max(N) is a compact space. Let M1, M2 ∈ Max(N)
and consider a multiplicative subset

S = {a1b1 · · · an−1bn−1anbn | ai /∈ M1, bi /∈ M2, i = 1, 2, . . . , n, n ∈ N}.

Suppose that 0 /∈ S. Then by Lemma 2.3, there is a strongly prime ideal P of
N with P ∩ S = φ and hence P ⊆ M1 ∩M2, a contradiction. So there exists
ai /∈ M1 and bi /∈ M2 such that a1b1 · · · anbn = 0. Let x1 = 〈a1〉 〈a2〉 · · · 〈an〉
and x2 = 〈b1〉 〈b2〉 · · · 〈bn〉 such that x1 /∈ M1 and x2 /∈ M2. Since N is NI, we
have N/N∗(N) is reduced. Hence x1x2 ∈ N∗(N). Since N∗(N) is completely
semiprime, we have 〈x1〉 〈x2〉 ⊆ N∗(N), which implies (D(x1) ∩ Max(N)) ∩
(D(x2) ∩ Max(N)) = φ with M1 ∈ D(x1) ∩ Max(N) and M2 ∈ D(x2) ∩
Max(N). Therefore Max(N) is a compact Hausdorff space. �

We have the following corollary from Theorem 3.8.

Corollary 3.9 ([3], Lemma 3.4). If a ring R is NI and weakly pm, then Max(R)
is a compact Hausdorff space.

As an immediate consequence of Theorem 3.8 or Corollary 3.9, we have the
following corollary.

Corollary 3.10 ([3], Corollary 3.5). If R is a 2-primal and pm ring, then

Max(R) is a compact Hausdorff space.

Proposition 3.11. For a near-ring N the following conditions are equivalent:
(1) SSpec(N) is normal.

(2) Max(N) is a retract of SSpec(N) and Max(N) is Hausdorff.

Proof. (1) ⇒ (2) Suppose that SSpec(N) is normal. By Theorem 3.4(4),
Max(N) is Hausdorff. Without loss of generality we can assume that N∗(N) =
0 since SSpec(N) is canonically isomorphic to SSpec(N/N∗(N)). Now for each
P ∈ SSpec(N), define FP = {I ∈ Idl(N) | I + P = N}. Then FP has the fol-
lowing properties: (i) if I1 + I2 ∈ FP , then either I1 ∈ FP or I2 ∈ FP , (ii) if
I ∈ FP and I ⊆ J , then J ∈ FP . Let MP =

∑
{I ∈ Idl(N) | I /∈ FP }. Note

that 1 /∈ MP and P ⊆ MP . Assume that MP is not maximal, say MP ⊂ M for
some maximal ideal M of N. Then M ∈ FP and so M + P = N which implies
M = M +MP ⊇ M + P = N, a contradiction. Hence MP is maximal. If P is
maximal, then MP = P.

Now we define a mapping f : SSpec(N) → Max(N) by sending each
P ∈ SSpec(N) to MP ∈ Max(N). Let D(I) ∩ Max(N) be an arbitrary
open subset of Max(N). We claim that, f−1(D(I) ∩ Max(N)) is an open
subset of SSpec(N). Let P be a strongly prime ideal in SSpec(N) such that
P ∈ f−1(D(I)∩Max(N)). Then f(P ) ∈ D(I)∩Max(N). Therefore I * f(P ).
Thus I +P = N. So there are ideals J1, J2 such that I +J1 = N = P +J2 and
S(J1)S(J2) = 0, which implies J2 * P. Now we show that D(J2) ⊆ f−1(D(I)∩
Max(N)). Let P1 ∈ D(J2). Then S(J1) ⊆ P1, which gives I + P1 = N. Hence
I ∈ FP1

and I * f(P1). Then f is continuous.
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(2) ⇒ (1) Let g be a continuous retraction of SSpec(N) onto Max(N). For
a closed subset F of SSpec(N), we have g(F ) = F ∩Max(N). If now F1 and F2

are disjoint closed subsets of SSpec(N), we can enclose F1∩Max(N) and F2∩
Max(N) in disjoint open sets D(I) and D(J) of Max(N), and now g−1(D(I))
and g−1(D(J)) are open and disjoint in SSpec(N) with F1 ⊆ g−1(D(I)) and
F2 ⊆ g−1(D(J)). �

Theorem 3.12. Let N be a NI near-ring. Then the following conditions are

equivalent:
(1) N is weakly pm.

(2) SSpec(N) is normal.

(3) Max(N) is a retract of SSpec(N).

Proof. (3) ⇒ (1) and (2) ⇒ (3) follows from Lemma 3.7(3) and Proposition
3.11.

(1) ⇒ (2) Suppose that N is weakly pm. Then SSpec(N) is normal by
Theorem 3.8 and Proposition 3.11 when Max(N) is a retract of SSpec(N).
Since N is weakly pm, we can obtain a retraction f : SSpec(N) → Max(N) by
sending each strongly prime ideal to the unique maximal ideal containing it. For
a closed subset F of Max(N), we claim that f−1(F) is closed in SSpec(N). Let
B = ∪{M | M ∈ F}, F = ∩{M | M ∈ F} and I = ∩{P ∈ SSpec(N) | f(P ) ∈
F}.

Let Q ∈ SSpec(N) with Q ⊆ B. Then Q+ F ⊆ B clearly, and so there is a
maximal ideal M with Q+F ⊆ M. Thus we have M ∈ F since F is closed and
F ⊆ M. Moreover, M is the unique maximal ideal containing Q because N is
weakly pm.

Now let P ∈ SSpec(N) with I ⊆ P. Consider any finite subset {si | si /∈
B, i ≤ n} where n ∈ N. Let t /∈ P. Then t /∈ I and so there is P1 ∈ SSpec(N)
such that t /∈ P1 and f(P1) ∈ F. Since si /∈ B, we have si /∈ P1. Hence there

exists zi, z
′

j ∈ N for i ≤ n, j ≤ n− 1 such that s1z1tz
′

1s2z2tz
′

2 · · · tz
′

n−1snznt /∈
P1. Define a multiplicative subset X = {s1t1s2t2 · · · sntn | si /∈ B, ti /∈ P, i ≤
n, n ∈ N}. Assume 0 ∈ X and say s1t1s2t2 · · · sntn = 0 for some si /∈ B, ti /∈ P.
Then there are ci ∈ N, i ≤ n − 1 such that t = t1c1t2c2 · · · tn−1cn−1tn /∈ P.

Hence there exists zi, z
′

j ∈ N for i ≤ n, j ≤ n− 1 such that

s1z1tz
′

1s2z2tz
′

2 · · · tz
′

n−1snznt /∈ I.

By Lemma 2.2, N/N∗(N) is symmetric. Since s1t1s2t2 · · · sntn = 0, we have

s1z1tz
′

1s2z2tz
′

2 · · · tz
′

n−1snznt ∈ N∗(N). Thus s1z1tz
′

1s2z2tz
′

2 · · · tz
′

n−1snznt ∈
P1, a contradiction. Then there exists a strongly prime ideal Q of N with
Q ⊆ P ∩ B. Therefore Q ⊆ P ⊆ M = f(P ) = f(Q) ∈ F. Hence SSpec(N) is
normal. �

The following is an immediate corollary of Theorem 3.12.

Corollary 3.13 ([3], Theorem 3.7). Let R be a NI ring. Then the following

conditions are equivalent:



676 P. DHEENA AND C. JENILA

(1) R is weakly pm.

(2) SSpec(R) is normal.

(3) Max(R) is a retract of SSpec(R).

If N is NI, we obtain the following results.

Theorem 3.14. Let N be a NI near-ring. Then N∗(N)S = ∩V (N∗(N)S) for
any subset S of N.

Proof. Clearly N∗(N)S ⊆ ∩V (N∗(N)S). Let a ∈ N\N∗(N)S . Then aS *
N∗(N). Thus as /∈ P for some P ∈ SSpec(N) and s ∈ S. Let x ∈ N∗(N)S .
Then xS ⊆ N∗(N). Since N∗(N) is completely semiprime, we have 〈x〉 〈s〉 ⊆
N∗(N). Since s /∈ P, we have x ∈ P. Then N∗(N)S ⊆ P. Thus a /∈ P ∈
V (N∗(N)S) and hence ∩V (N∗(N)S) ⊆ N∗(N)S . �

Lemma 3.15. Let N be a NI near-ring and let a, b ∈ N. Then int V (a) ⊆ int

V (b) if and only if N∗(N)a ⊆ N∗(N)b.

Proof. Let int V (a) ⊆ int V (b) for any a, b ∈ N and let x ∈ N∗(N)a. Then
xa ∈ N∗(N), and so 〈x〉 〈a〉 ⊆ N∗(N), which implies SSpec(N)\V (x) ⊆ V (a).
Then SSpec(N)\V (x) ⊆ int V (a) ⊆ int V (b) ⊆ V (b), which gives bx ∈ N∗(N),
so x ∈ N∗(N)b.

Conversely, let N∗(N)a ⊆ N∗(N)b and let P ∈ int V (a). Suppose P /∈ V (b).
Then b /∈ P. Since P ∈ int V (a), we have P /∈ SSpec(N)\int V (a). Then
by Lemma 3.2, we have SSpec(N)\int V (a) = V (J) for some ideal J of N.
Since P /∈ V (J), we have c /∈ P for some c ∈ J, and so SSpec(N)\int V (a) =
V (J) ⊆ V (c). Clearly ac ∈ N∗(N) and bc /∈ N∗(N). Then c ∈ N∗(N)a and
c /∈ N∗(N)b, a contradiction. Hence int V (a) ⊆ int V (b). �

Lemma 3.16. Let N be a NI near-ring. Then for every a ∈ N, cl(D(a)) =
V (N∗(N)a) = Supp(a) = SSpec(N)\int V (a).

Proof. Let P ∈ D(a) and x ∈ N∗(N)a for any a ∈ N. Then a /∈ P and
xa ∈ N∗(N). Since N∗(N) is completely semiprime, we have 〈x〉 〈a〉 ⊆ N∗(N),
and so x ∈ P. Thus N∗(N)a ⊆ P and hence P ∈ V (N∗(N)a). So D(a) ⊆
V (N∗(N)a). Let P1 ∈ cl(D(a)). Then P1 ∈ V (N∗(N)a) since V (N∗(N)a) is a
closed set containing D(a). Let P ∈ V (N∗(N)a), and let D(x) be any arbitrary
element in the basis B such that P ∈ D(x). Suppose P /∈ D(a) and suppose
D(x) ∩ D(a) = φ. Then D(xa) ⊆ D(x) ∩ D(a) = φ, and so xa ∈ N∗(N)
which implies x ∈ P, a contradiction. Thus D(x) ∩ D(a) 6= φ and hence
V (N∗(N)a) ⊆ cl(D(a)).

If P ∈ D(a), then P ∈ D(a) ∩ D(x) 6= φ, and so V (N∗(N)a) ⊆ cl(D(a)).
Clearly Supp(a) = V (N∗(N)a). Let P ∈ cl(D(a)) and suppose that P ∈
int V (a). Then there is an open set U of SSpec(N) with P ∈ U ⊆ V (a),
and so P /∈ SSpec(N)\U, a contradiction. Let P ∈ SSpec(N)\int V (a) and
let D(x) be any arbitrary element in the basis B such that P ∈ D(x). Suppose
that D(x) ∩D(a) = φ. Then ax ∈ N∗(N), and so x ∈ N∗(N)a. But x /∈ P, we
have N∗(N)a * P. Hence P ∈ D(N∗(N)a) ⊆ V (a), a contradiction. �
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